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Abstract

Vision-language models (VLMs) excel in se-
mantic tasks but falter at a core human capa-
bility: detecting hidden content in optical illu-
sions or Al-generated images through percep-
tual adjustments like zooming. We introduce
HC-Bench, a benchmark of 112 images with
hidden texts, objects, and illusions, revealing
that leading VLMs achieve near-zero accuracy
(0-5.36%) even with explicit prompting. Hu-
mans resolve such ambiguities instinctively, yet
VLMs fail due to an overreliance on high-level
semantics. Strikingly, we propose SemVink
(Semantic Visual Thinking) by simply scaling
images to low resolutions, which unlocks over
99% accuracy by eliminating redundant visual
noise. This exposes a critical architectural flaw:
VLMs prioritize abstract reasoning over low-
level visual operations crucial for real-world
robustness. Our work urges a shift toward hy-
brid models integrating multi-scale processing,
bridging the gap between computational vision
and human cognition for applications in medi-
cal imaging, security, and beyond.

1 Introduction

Vision-language models (VLMs) have revolution-
ized multimodal understanding, excelling at tasks
like image captioning and visual reasoning. Al-
though VLMs have been capable of many challeng-
ing visual tasks, some seemingly simple vision-
language tasks are impossible for them to solve.
A critical gap persists: their inability to recognize
visually hidden content, i.e., information embed-
ded in images that requires human-like percep-
tual adaptations such as zooming, squinting, or
dynamic scaling to detect. This limitation becomes
starkly apparent when analyzing optical illusions,
Al-generated “double images,” or medical scans
with subtle anomalies, where human observers in-
stinctively adjust their visual processing to uncover
obscured details.

*Corresponding author.
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Figure 1: Illusional images can contain hidden texts or
hidden images within the obvious background scenes.

Current VLM architectures prioritize high-level
semantic reasoning at the expense of low-level
visual operations fundamental to human percep-
tion. While benchmarks like EXAMS-V (Das et al.,
2024) test compositional reasoning, they neglect
perceptual adaptability—the ability to iteratively
refine visual analysis through multi-scale or con-
trast adjustments. This oversight masks a critical
weakness: VLMs universally fail to detect hidden
text or objects, even when explicitly prompted to
“zoom in” or “adjust contrast”, as shown in Figure 2.
The root cause lies in their reliance on static, high-
resolution embeddings that prioritize local texture
over global structure, burying hidden patterns un-
der redundant spatial features.
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We address this gap through three contribu-
tions. First, we introduce HC-Bench, a bench-
mark for hidden content recognition, comprising
112 synthetic images with embedded Latin/non-
Latin texts and objects. Generated via the Stable
Diffusion model (Rombach et al., 2022) with Con-
trolNet (Zhang et al., 2023a), these images preserve
naturalistic backgrounds while embedding content
detectable only through perceptual adjustments.
Second, we demonstrate universal failure across
12 state-of-the-art VLMs (0-5.36% accuracy), re-
vealing their inability to simulate human-like vi-
sual refinement via prompting or few-shot learn-
ing. Third, we propose SEMVINK (SEMANTIC
VISUAL THINKING) to identify a surprisingly ef-
fective solution: programmatic image scaling to
low resolutions (32-128 pixels), which suppresses
redundant features and achieves over 99% accu-
racy. Embedding analysis confirms that scaling
shifts attention from local textures to global pat-
terns, mirroring human perceptual strategies.

Our contributions are as follows:

¢ We introduce a benchmark for hidden content
recognition, addressing limitations in existing
datasets like EXAMS-V (Das et al., 2024) and
IllusionBench (Zhang et al., 2025).

* We empirically reveal the VLMSs’ inability to
perform human-like perceptual adjustments,
exposing a foundational design flaw prioritiz-
ing semantics over basic visual processing.

* We propose a scalable solution via preprocess-
ing pipelines, demonstrating that low-level
operations can bridge the gap between com-
putational vision and human cognition.

Our findings challenge the prevailing focus on
semantic abstraction in VLM design. This study
redefines VLM evaluation by emphasizing the im-
portance of integrating low-level visual skills into
multimodal architectures which is a paradigm shift
critical for real-world robustness in ambiguous sce-
narios. By linking encoder limitations to redundant
feature patterns, we provide actionable insights for
improving VLM design.

2 Related Work

Our research intersects three critical domains: (1)
architectural limitations of vision-language mod-
els, (2) computational analysis of hidden content,
and (3) multimodal benchmarking paradigms. We
contextualize our contributions within these areas.

2.1 Vision-Language Models

Modern VLMs like CLIP (Radford et al., 2021),
Flamingo (Alayrac et al., 2022), and BLIP-2 (Li et
al., 2023) excel at semantic alignment between
images and text, enabling tasks such as open-
vocabulary detection and visual question answer-
ing. However, their design prioritizes high-level
reasoning over low-level visual processing. Recent
studies reveal critical gaps: texture bias and static
processing. VLMs inherit CNNs’ tendency to pri-
oritize local textures over global shapes (Geirhos
et al., 2022), hindering recognition of content re-
quiring spatial coherence (Yang et al., 2024). Un-
like humans, VLMs process images at fixed resolu-
tions without dynamic scaling (Dosovitskiy et al.,
2021), limiting adaptability to multi-scale patterns.
Redundant Embeddings: High-resolution vision
encoders (e.g., ViT-L/14)! produce spatially redun-
dant features that obscure subtle details (Liu et al.,
2023; Vasu et al., 2024; Rao et al., 2024; Carvalho
and Martins, 2025), corroborating our findings in
Section 3.4.

While recent work explores hybrid architec-
tures (Chen et al., 2024; Qi et al., 2024; Li et al.,
2025; Liao et al., 2025) and multi-task train-
ing (Rao et al., 2024; Wang et al., 2023; Ma et al.,
2024), none address perceptual adaptability for hid-
den content detection.

2.2 Hidden Content and Perceptual Illusions

The study of hidden content spans cognitive sci-
ence and computational vision. Classic work on
perceptual grouping (Wertheimer, 1923) and figure-
ground segregation (Kanizsa et al., 1979) demon-
strates humans’ ability to resolve ambiguous stim-
uli through iterative adjustments (e.g., squinting).
Neuroimaging studies link this to feedback loops
in visual cortex (Lamme and Roelfsema, 2000).
With the advancement of generative Al, Al-
generated images with hidden content emerge. Dif-
fusion models now embed text/objects impercepti-
ble to humans without scaling (Rombach et al.,
2022), raising concerns about adversarial mis-
use (Zhu et al., 2024; Zeng et al., 2025; Gao et al.,
2024; Duan et al., 2025). ControlNet (Zhang et al.,
2023a) enables precise spatial conditioning but
has not been leveraged for perceptual evaluation.
Zhang et al. (2023b) tested whether VLMs have
the similar kind of illusions as humans do, which

'The model is available at https://huggingface.co/
openai/clip-vit-large-patch14
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provides a new profound prospect to address this
type of problems. While IllusionBench (Zhang
et al., 2025) tests geometric illusions, and SVO-
Probes (Hendricks and Nematzadeh, 2021) eval-
uates spatial understanding, neither addresses Al-
generated hidden content requiring dynamic pro-
cessing.

2.3 Multimodal Benchmarking Gaps

Existing benchmarks inadequately assess percep-
tual adaptability. We can find the three preference
of existing benchmarks: focusing on semantic tests,
robustness and dynamic processing, respectively.

VQA (Agrawal et al., 2016), GQA (Hudson and
Manning, 2019), and TextVQA (Singh et al., 2019)
emphasize textual or compositional reasoning, not
low-level vision.

ImageNet-C (Hendrycks and Dietterich, 2019)
evaluates corruption resilience but not hidden con-
tent. EXAMS-V (Das et al., 2024) focuses on fac-
tual knowledge, not perceptual strategies.

Fan et al. (2021) on multi-scale vision and
Perugachi-Diaz et al. (2024) on neural compres-
sion highlight the need for adaptive resolution but
lacks task-specific benchmarks.

Hemmat et al. (2024) focuses on abstract shape
illusions and uses clearly defined geometric pat-
terns without subtly hiding. This work only evalu-
ates existing VLMs capabilities without proposing
solutions. The broader problem of hidden-content
recognition is not addressed yet.

Rostamkhani et al. (2024) introduced blurring
method to address this recognition difficulty which
has little effects.

SemVink fills these voids by comprehensively
evaluating VLMs’ capacity to simulate human per-
ceptual adjustments which is a prerequisite for ro-
bustness in real-world scenarios like medical imag-
ing (subtle lesions) or security (steganographic con-
tent) and proposing a simple but effective solution
to address this problem.

2.4 Low-Level Vision Operations in
Multimodal Models

While recent VLM research emphasizes high-level
alignment and reasoning, a complementary line of
work shows that low-level image operations can
substantially improve robustness and perception.
Classical multi-scale designs aggregate informa-
tion across resolutions to suppress spurious textures
and emphasize global structure (e.g., Multiscale

Vision Transformers) (Fan et al., 2021). Closely re-
lated, anti-aliasing (low-pass filtering before down-
sampling) restores shift stability and reduces high-
frequency artifacts that often dominate features in
high-resolution encoders (Zhang, 2019).

Training-time transformations further indicate
the utility of explicit, lightweight preprocess-
ing. Corruption benchmarks such as ImageNet-
C (Hendrycks and Dietterich, 2019) spurred aug-
mentation techniques (e.g., AugMix and Ran-
dAugment) that improve robustness to distribu-
tion shifts and nuisance variations without architec-
tural changes (Hendrycks et al., 2020; Cubuk et al.,
2020). Beyond distribution shift, the adversarial-
robustness community has repeatedly found that
input transformations (bit-depth reduction, JPEG
compression, total-variation minimization, smooth-
ing) can ablate brittle, high-frequency cues and en-
hance resilience (Guo et al., 2018; Xu et al., 2018).

SemVink operationalizes this perspective for
VLMs: a simple zoom-out (downscaling to 32—
128 px) suppresses redundant high-frequency em-
beddings and exposes global patterns necessary
for reading hidden text or recognizing silhouettes.
This aligns with recent findings that many security-
focused protections for modern generators and
editors also rely on low-level transforms (e.g.,
watermark-embedded adversarial examples; pro-
tective backdoors) to manipulate or gate what mod-
els perceive and edit (Zhu et al., 2024; Zeng et al.,
2025). We argue that such operations should be
elevated from ad-hoc preprocessing to first-class,
integrable visual tools inside VLM pipelines (e.g.,
dynamic multi-scale routing or learned resolution
schedules), complementing high-level semantics
with the perceptual adaptability humans routinely
employ.

2.5 Cognitive Basis of Vision

Our work draws inspiration from theories of human
vision perception. Some key theories are primary
to both hidden content generation and recognition
in our work. Marr’s primal sketch that early visual
processing extracts edges and blobs (Marr, 1982).
This is analogous to our low-resolution scaling’s
emphasis on global structure. Predictive coding
is also vital in human recognition. Humans iter-
atively refine predictions through feedback (Rao
and Ballard, 1999), which is a capability absent in
feedforward VLMs. In perceptual learning, exper-
tise improves detection of hidden patterns through



reweighting visual features (Goldstone, 1998), sug-
gesting potential for VLM fine-tuning with our pro-
posed dataset HC-Bench.

3 Methodology

In this section, we introduce the dataset we con-
struct and the zoom-out method we propose to help
the models see the hidden content. The dataset is
not only for our experiments but also for facilitating
the future research in this topic.

3.1 Data Construction

We introduce HC-Bench, a benchmark dataset for
evaluating VLMSs’ ability to recognize visually hid-
den content. As shown in Figure 1, the dataset
consists of 112 synthetic images divided into two
categories:

Hidden text images (56 total). 28 Latin words
are selected from seven semantic categories (e.g.,
animals, objects), varying in length and frequency.
28 non-Latin words are Chinese characters and
other scripts, balanced for visual complexity.

Hidden object images (56 total). Seven object
classes (e.g., faces, animals, vehicles), with eight
instances per class. Objects are subtly embedded
into naturalistic backgrounds (e.g., landscapes, ur-
ban scenes).

We ensure the dataset is balanced to mitigate po-
tential biases and enhance the generalizability. For
each type of concepts, we pick common concepts
(e.g., words like “MARS” and “DOG” and objects
like a cat and a bed) as half of the dataset and rel-
atively rare concepts (e.g., words like “WYVERN”
and “SACCHARINE” and objects like Cologne
cathedral and a Tyrannosaurus) as the other half.
The distribution is balanced as in Table 1.

3.1.1 Implementation Details

To hide the target content, we need a background
scene that is irrelevant to what to hide. We use
Qwen3-235B-A22B? to generate 112 diverse scene
descriptions (e.g., a bustling city street at sunset or
a serene mountain lake).

With these background scenes descriptions, we
can hide the target content into the scene when
synthesizing the image. All images were gener-
ated using the diffusion model Stable Diffusion

2The model is available at https://chat.qwen.ai/ and
https://huggingface.co/Qwen/Qwen3-235B-A22B

Type ‘ Hidden Text Hidden Object
Normal 28 28
Rare 28 28

Table 1: The data distribution of HC-Bench.

v1.5% (Rombach et al., 2022) with a specialized
ControlNet (Zhang et al., 2023a) module (con-
trol_vlp_sdlS_qrcode_monster4) to ensure precise
integration of hidden content. We employ DPM++
3M SDE (Lu et al., 2023) as the sampling method.
We set the ControlNet weight in the range from 1.2
to 1.4, since weights < 1.2 resulted in hidden con-
tent that is imperceptible for humans; weights > 1.4
caused unnatural artifacts. The synthetic images
are set to be with a resolution that either height or
width is in the range of 512-1440 pixels (maintain-
ing the aspect ratio).

The entire generation process is employed on
one NVIDIA RTX A6000 card with 48 GB VRAM.

3.2 Evaluation Protocol

As shown in Figure 2, we should ask VLMs with
direct questions and then hint them with correct
answers if direct questions do not obtain positive
responses.

Direct questions. We first ask direct questions to
VLMs. For hidden text cases, we ask:

Direct Question for Hidden Text

What is within this image? Is
there any text hidden within
this image?

[The hidden text: “POLO”]

What is within this image? Is there any
other content hidden within this image?
[The hidden object: a cat]

Follow-up hints. We also provide follow-up
hints for the VLMs if the direct questions cannot
get the answer we want. For hidden text cases, we
hint the model with:

Follow-up Hint for Hidden Text

Whether there is [hidden text] within this image?

3The model is available ar https://huggingface.co/
stable-diffusion-v1-5/stable-diffusion-v1-5

*The model is available at https://huggingface.co/
monster-labs/control_vip_sd15_grcode_monster
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Do you see
Colosseum?

Is there any text hidden
within this image?
04-mini

No. I don’t see any. ®

@, Question

Can you see any texts within
this picture?

New York

@ o4-mini

| don’t see any written characters, logos, or water-
marks in this scene - it’s purely a piece of sci-fi
concept art of a floating whale over a futuristic

cityscape, without any visible text.

@ o4-mini
No. @

Is there any text hidden
within this image?

Is a cat hidden
in this image?
04-mini @ o4-mini

No. I don’t see any. @ No. ®

®, Question

Could there be texts “New York” inside this picture?

04-mini
| don’t see any hidden or overt lettering — there’s no
“New York” (or any other text) embedded anywhere
in that scene. It’s purely a text-free, futuristic city-
scape with a levitating whale.

&)

Figure 2: As one of the best state-of-the-art VLMs, 04-MINI is incapable in recognizing the hidden texts and
objects within images even when we prompt directly with the correct answers. The hidden items in these images are
“MARS”, Colosseum, “YES”, a cat, and “NEW YORK”, respectively.

For hidden object cases, we hint:

Follow-up Hint for Hidden Object
Whether there is [hidden figure or silhouette]

within this image?

The [hidden text] is the correct answer
text (e.g., “POLO”) and [hidden figure or
silhouette] is the brief description of the hidden
object (e.g., “a cat silhouette™).

Prompt engineering attempts. We should try ex-
plicit instructions for perceptual adjustments. For
example, accompanied with the direct questions,
we prompt the VLMs with this:

Prompt Engineering Template

Adjust contrast or brightness to examine the image macro-

scopically. Zoom in or out to identify layered details.

We should try to help the VLMs finish the work
only by prompting.

Few-shot learning. Paired examples of origi-
nal images, preprocessed versions (e.g., scaled or
downsampled), and ground-truth answers should
be input to the model to help it learn to understand
and reproduce this process.

3.3 SemVink Solutions

Like the cases shown in Figure 2, the zero-shot
prompting with both direct questions and follow-up

hints fails to recognize hidden content. Therefore,
we try preprocessing the image by scaling it like
zooming out or adjusting their brightness or con-
trast like squint. As shown in Figure 3, the two
methods can help humans find the hidden content.

Squint. The squint method is also tested. We
keep the original image size and try different bright-
ness and contrast adjustments. Moreover, we
also try this enhancement on the image: Step 1.
Grayscale + Canny edge detection to highlight
structural lines. Step 2. HSV color segmentation
to isolate specific color regions. Step 3. Histogram
equalization to improve contrast. The imaging re-
sult is provided for the model to help realize squint-
ing automatically.

Zoom out. We implemented a preprocessing
pipeline to simulate human-like perceptual adjust-
ments. For zoom-out operation, the input image are
automatically resized to a lower resolution pixels
(preserving the aspect ratio). The resized image is
sent to the model with the original prompt to help
the VLM have a zoomed-out view.

Our target is that the scaled images should be
fed directly into VLMs without additional prompts.
Therefore, we integrate the zoom-out and squint
methods to the inference-time for each tested VLM.



People are in a city park surrounded by plahts and
buildings, or there might be something else?

Z00OMOUT

Zoom-in and zoom-out adjust the size of the
image without changing the aspect ratio.

OB

SQUINT
Squinting
decreases
the brightness.

Figure 3: Two methods to help humans recognize the hidden content a Labrador retriever within the image: zoom
out the image to a sight from a distance and squint to observe the image to reduce the brightness to highlight the

hidden content.

3.4 Embedding Redundancy

We analyze vision encoder outputs for most models
to understand failure modes. To quantify feature
redundancy in high-resolution embeddings, we ex-
tract vision encoder outputs (e.g., ViT-L/14) for
both original and scaled-down images. Redun-
dancy is measured through token repetition rate
analysis which calculates the proportion of embed-
ding tokens with cosine similarity >0.95 across spa-
tial positions, indicating near-identical feature pat-
terns. The attention map analysis on query tokens
(e.g., “[HIDDEN_TEXT]”) using cross-attention lay-
ers shows that the attention across redundant re-
gions (e.g., textures) in high-resolution images
masks the activation on hidden content.

This methodology rigorously isolates VLMs’
limitations in low-level visual processing and
demonstrates how simple preprocessing can bridge
the gap between computational vision and human-
like perception.

4 Experiments

In this section, we present the performance of the
SemVink zoom-out method integrated in VLMs.
We conduct experiments by providing the VLM
with each image in HC-Bench and direct questions.
Follow-up hints will given if the direct questions
cannot pass the test as described in Section 3.2.
The comparison results validate the significant en-
hancement of SemVink and demonstrate that we
find the way to let the models zoom.

4.1 Experimental Setup

The experiments are conducted on the constructed
dataset HC-Bench as described in Section 3.1. We
evaluate 12 state-of-the-art VLMs: 03,> 04-mini,°
Gemini 2.5 Pro,” Grok 3,% Mistral,” Claude 3.7
Sonnet,'? LLaVA-v1.5-7B,!! Doubao-1.5-thinking-
vision-pro,'? Kimi-VL-A3B-Thinking,!* Qwen2-
VL-7B-Instruct, !4 Qwen2—VL—72B—InstruCt,15 and
DeepSeek-VL2.!6

Accuracy (%) for recognizing hidden text (exact
match) and objects (category-level correctness) is
calculated. Human evaluators manually verify re-
sponses to avoid ambiguities (e.g., partial matches
or synonyms). We define the correct answer of the
text cases should exactly match the hidden word(s),
but the object cases are deemed to take the recogni-

>The model is available at https: //openai.com/index/
introducing-o3-and-o04-mini/

6Themodelisavailableathttps://openai.com/index/
introducing-o3-and-o04-mini/

7Themodelisavailableathttps://deepmind.google/
technologies/gemini/pro/

%The model is available at https://grok3ai.net/

9Themodelisavailableathttps://chat.mistral.ai/
chat

'The model is available at https://www.anthropic.
com/claude/sonnet

""'The model is available at https://huggingface.co/
liuhaotian/1llava-v1.5-7b

>The model is available at https://www.volcengine.
com/

BThe model is available at https://huggingface.co/
moonshotai/Kimi-VL-A3B-Thinking

The model is available at https://huggingface.co/
Qwen/Qwen2-VL-7B-Instruct

5The model is available at https://huggingface.co/
Qwen/Qwen2-VL-72B-Instruct

!“The model is available at https://huggingface.co/
deepseek-ai/deepseek-v12
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Model

CLAUDE 3.7 SONNET
GEMINI 2.5 PRO X
KiMI-VL-A3B-THINKING X
QWEN2-VL-7B-INSTRUCT
QWEN2-VL-72B-INSTRUCT

| 8-32 32-128 128-512 512+

> X X X X
X X X X X

Table 2: For one typical image containing text New York
as shown in Figure 2, we test some models ability to
recognize the hidden text by zooming out to different
scales. We can find the range of the resolution from
32x32 to 128x 128 (keep the aspect ratio) is the best
zooming scale range.

Model ‘ B-32; C+32 B-64; C+64 B-128;C+64 Enhance
CLAUDE 3.7 SONNET X
GEMINI 2.5 PRO X
KiMI-VL-A3B-THINKING X
QWEN2-VL-7B-INSTRUCT
QWEN2-VL-72B-INSTRUCT

xX X X X X
xX X X X X
X X X X X

X

Table 3: For one typical image containing text New York
as shown in Figure 2, we test some models ability to rec-
ognize the hidden text by squinting. B-32; C+32 stands
for brightness lowered by 32 and contrast enhanced by
32. No specific brightness, contrast or enhancement
configuration can help the models.

tion of the general category (e.g., “face” sufficed,
no need for specific identity), considering that the
knowledge across different models varies and our
expectation is to check if the model can see any
hidden content.

All the experiments are run on one NVIDIA
A6000 GPU (48GB VRAM).

4.2 SemVink Evaluation

We find zoom-out method is effective to help recog-
nize the hidden content while squint fails. We test
some VLMs with different zoom-out scales and
find the obvious sensitive range for VLMs to recog-
nize the hidden information. As shown in Table 2,
we find the best resolution is always in 32—128 pix-
els (keep the aspect ratio). Possible reason could
be that higher resolutions reintroduce redundancy
and lower resolutions degraded visibility.

Unlike the zoom-out method, we fail to obtain
a good result with many squint configuration at-
tempts. According to the method described in
Section 3.3, we check some models with different
brightness/contrast settings and the enhancement.
As shown in Table 3, squint operations are clearly
insufficient to resolve the hidden-content recogni-
tion task.

According to the evaluation method in Sec-
tion 3.2 and zoom-out in Section 3.3, we test all the
twelve models with direct questions, hints after fail-
ing the direct question, prompt engineering, few-

shot learning and zoom-out method. The experi-
mental results are in Table 4. Like the cases shown
in Figure 2, the results validate that all these meth-
ods but zoom-out lead to catastrophic failures.
Moreover, the prompt engineering for macroscopic
view and few-shot learning method both hardly
help VLMs. They even present worse performance
than the hint method in zero-shot prompting.

Based on the experimental results and analysis
above, we choose to conduct experiments to rig-
orously test the zoom-out method in the optimal
range 32-128 pixels, so we employ the integration
of our zoom-out method on all the tested VLMs
and compare the results with the best results we ob-
tained among methods of direct questions, hinted,
prompt engineering and few-shot prompting, on all
the 112 cases in HC-Bench.

According to the results in Table 4, we can find
some remarkable patterns.

Universal failure of baseline methods. All
VLMs achieve near-zero accuracy (0-5.36%) on
hidden text/object recognition under zero-shot,
hinted, or few-shot settings. Explicit instructions
(e.g., “zoom in/out to examine layered details”)
yield no improvement, highlighting VLMs’ inabil-
ity to simulate perceptual adjustments.

Dramatic improvement with zoom-out. Scal-
ing images to low resolutions (32-128 pixels)
achieves 91.07-100% accuracy across models.
Larger models (e.g., 04-MINI, GEMINI 2.5 PRO
and QWEN2-VL-72B-INSTRUCT) reach perfect
scores of 100% on both text and object cases, while
smaller models (e.g., KIMI-VL-A3B-THINKING
and LLAVA-v1.5-7B) also exceed 90% accuracy
overall. Non-Latin text recognition (e.g., Chinese)
improves proportionally, suggesting scaling gener-
alizes across scripts.

Text vs. Object recognition. Hidden text cases
have explicit character patterns amplified by scal-
ing, while hidden object cases have category-level
ambiguity (e.g., distinguishing Tyrannosaurus or
dinosaurs resembled to other animals). Some mod-
els have a better performance in text cases while the
others are better at object cases. A possible reason
could be that different models have different pref-
erence in training data. As an overall pattern, the
models cannot recognize either type of the hidden
content without zoom-out.



Zero-Shot Direct Zero-Shot Hinted

Zero-Shot Prompt Few-Shot w/ zoom-out

Model
Text (%) Object (%) Text (%) Object (%) Text(%) Object(%) Text(%) Object (%) Text (%) Object (%)

03 0 0 0 0 0 0 0 0 100.0 100.0
04-MINI 0 0 0 0 0 0 0 0 100.0 100.0
GEMINI 2.5 PRO 0 0 0 0 0 0 0 0 100.0 100.0
GROK 3 0 5.36 0 8.93 0 5.36 0 5.36 98.21 100.0
MISTRAL 0 0 0 10.71 0 0 0 5.36 96.43 100.0
CLAUDE 3.7 SONNET 0 0 1.78 3.57 0 0 0 0 98.21 100.0
LLAVA-v1.5-7B 0 0 0 0 0 0 0 0 91.07 98.21
DOUBAO-1.5-PRO 0 0 0 0 0 0 0 0 96.43 98.21
KiMI-VL-A3B-THINKING 0 0 0 0 0 0 0 0 94.64 91.07
QWEN2-VL-7B-INSTRUCT ~ 1.78 3.57 3.57 3.57 1.78 3.57 1.78 3.57 100.0 96.43
QWEN2-VL-72B-INSTRUCT 1.78 1.78 5.36 3.57 1.78 3.57 1.78 3.57 100.0 100.0
DEEPSEEK-VL2 0 0 0 0 0 0 0 0 92.86 94.64

Table 4: The recognition accuracy across different VLMs with four methods mentioned in Section 3.2 and SemVink
zoom-out method mentioned in Section 3.3. All tested VLMs are incapable of recognizing the hidden content in the
images. With the help of SemVink zoom-out, each tested VLM obtains a nearly 100% success rate.

Model Zero Shot Direct (%) Zero Shot Hinted (%) Zero Shot Prompt (%) Few Shot (%) w/ zoom out (%)
03 0 0 0 0 98.11
04-MINI 0 0 0 0 94.34
GEMINI 2.5 PRO 0 0 0 0 90.57
GROK 3 0 1.89 0 0 92.45
MISTRAL 0 3.77 1.89 0 94.34
CLAUDE 3.7 SONNET 0 1.89 0 0 98.11
LLAVA-V1.5-7B 0 0 0 0 96.23
DOUBAO-1.5-PRO 0 0 0 0 88.68
KiMI-VL-A3B-THINKING 0 0 0 0 86.79
QWEN2-VL-7B-INSTRUCT 0 0 0 0 94.34
QWEN2-VL-72B-INSTRUCT 0 0 0 0 96.23
DEEPSEEK-VL2 0 0 0 0 84.90

Table 5: Validation of task difficulty on 53 internet-sourced hidden-content images, collected independently to

reduce dataset-specific noise and biases.

Failure case analysis. Rare errors (1.79-8.93%)
occur due to two restricts. Severe artifacts: over-
scaling merges critical details (e.g., thin strokes
in Chinese characters). Ambiguous object silhou-
ettes: rare categories (e.g., Cologne Cathedral) lack
distinct low-resolution patterns. Also, encoder lim-
itations matter. Smaller VLMs (e.g., LLaVA-7B)
struggle with extreme downsampling due to limited
receptive fields.

4.3 Dataset-Specific Noise

As the results shown in Table 5, on the hidden-
content images from wild on the internet, all tested
VLMs still fail under standard settings, while the
SemVink zoom-out method consistently yields
large performance gains. This confirms that the
limitation is inherent to current VLMs rather than
an artifact of dataset-specific bias.

4.4 Embedding Redundancy Analysis

High-resolution images (512-1440 pixels) are with
embedding tensors contained about 1000 repeated
tokens which indicates redundant spatial patterns.

Scaled low-resolution images (32—-128 pixels) are
with a redundancy reduced to about 10 repeated
tokens, aligning with successful detection.

In Figure 4, we visualize the 32-pixel scaled
image, 128-pixel scaled image and 1024-pixel orig-
inal image. We can find the clear patterns. The re-
dundant features within the original image keep the
VLMs from recognizing the hidden content. Atten-
tion maps reveals that high-resolution embeddings
focused excessively on background detailed infor-
mation, masking hidden content. Downsampled
images shift attention to global structures, expos-
ing hidden elements within the image.

Therefore, if we do not resize the image from
a direct imaging degree but find and trim the rele-
vant redundant part in embeddings, it is possible to
integrate a general vision operation to VLMs.

4.5 Discussion

The failure to recognize hidden content in im-
ages exemplifies the lack of basic visual opera-
tions in current VLMs. As shown in Table 3,
only QWEN2-VL-7B-INSTRUCT once success-



Found the Text? Yes.

Found the Text? Yes.

Found the Text? No.
0 o _ . -
140000
511 120000
100000
80000

60000

40000

) m o
0

10 15 20 25

Figure 4: The visualization of the embeddings of the input prompts with the image. In the conditions of the left one

(6 consecutive image tokens as in the consecutive

in the heatmap) and center one (10 consecutive

image tokens), VLMs can recognize the hidden content. In the condition of the right one (666 consecutive image
tokens), VLMs cannot find the hidden content. This demonstrates the redundant repeated information of the image

is the key to obstruct finding the hidden content.

fully passed the squint test under the enhancement,
while it fails in other cases and all other models
consistently fail across all cases. VLMs struggle
with tasks such as adjusting contrast and bright-
ness and seeing from blurred visions, which are
essential for recognizing patterns in blurry images,
interpreting medical scans, and addressing security
concerns. For instance, an adversarial trigger can
be embedded in a seemingly normal image. While
a general vision tool may not fully detect deeply
hidden triggers, having such a tool as a founda-
tional component is critical. Further technological
advances can then build on this foundation to ad-
dress security threats more effectively.

Such for medical imaging, VLMs currently rea-
son based only on image and text tokens. Complex
operations such as cropping or adjusting contrast
in specific regions still depend on external soft-
ware tools, akin to manual image editing before
re-inputting into the VLM. The absence of inte-
grated visual tools across existing VLMs leaves
this area largely unexplored. However, our findings
on the HC-Benchmark dataset suggest that such in-
tegration has the potential to significantly enhance
overall performance.

5 Conclusion

This work reveals a critical limitation in vision-
language models (VLMs). Current VLMs strug-
gle to detect hidden content requiring human-like
perceptual adjustments, as shown by their near-
zero performance on our HC-Bench benchmark.
This failure stems from prioritizing high-level se-
mantics over low-level visual processing. Simple
image scaling (32—-128 pixels) resolves this limi-

tation, achieving over 99% accuracy by reducing
redundant features in high-resolution embeddings.
Our work exposes a critical flaw in VLM design
and urges integration of multi-scale processing to
bridge computational vision with human perceptual
adaptability, advancing robustness in real-world
vision-language applications.

Limitations

While our method demonstrates significant im-
provements, key limitations still remain: HC-
Bench’s synthetic images may not fully capture
real-world hidden content complexity, such as nat-
ural lighting or occlusion. The efficacy of pro-
grammatic scaling is resolution-dependent, poten-
tially failing for ultra-fine patterns or requiring
dynamic multi-scale sampling. Static downsam-
pling neglects human-like dynamic adjustments
(e.g., iterative zoom-contrast combinations), and
rare scripts or categories may require specialized
scaling thresholds. Computational costs for high-
resolution preprocessing and energy trade-offs in
scaling also warrant optimization. Finally, manual
evaluation introduces subjectivity in object cate-
gorization, highlighting the need for automated
metrics and adaptive multi-scale methods.
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